Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence.

Identifieur interne : 000010 ( Main/Exploration ); précédent : 000009; suivant : 000011

Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence.

Auteurs : Xiwen Tong [République populaire de Chine] ; Yundan Wang [République populaire de Chine] ; Pengcheng Yang [République populaire de Chine] ; Chengshu Wang [République populaire de Chine] ; Le Kang [République populaire de Chine]

Source :

RBID : pubmed:32271756

Descripteurs français

English descriptors

Abstract

Metarhizium is a group of insect-pathogenic fungi that can produce insecticidal metabolites, such as destruxins. Interestingly, the acridid-specific fungus Metarhizium acridum (MAC) can kill locusts faster than the generalist fungus Metarhizium robertsii (MAA) even without destruxin. However, the underlying mechanisms of different pathogenesis between host-generalist and host-specialist fungi remain unknown. This study compared transcriptomes and metabolite profiles to analyze the difference in responsiveness of locusts to MAA and MAC infections. Results confirmed that the detoxification and tryptamine catabolic pathways were significantly enriched in locusts after MAC infection compared with MAA infection and that high levels of tryptamine could kill locusts. Furthermore, tryptamine was found to be capable of activating the aryl hydrocarbon receptor of locusts (LmAhR) to produce damaging effects by inducing reactive oxygen species production and immune suppression. Therefore, reducing LmAhR expression by RNAi or inhibitor (SR1) attenuates the lethal effects of tryptamine on locusts. In addition, MAA, not MAC, possessed the monoamine oxidase (Mao) genes in tryptamine catabolism. Hence, deleting MrMao-1 could increase the virulence of generalist MAA on locusts and other insects. Therefore, our study provides a rather feasible way to design novel mycoinsecticides by deleting a gene instead of introducing any exogenous gene or domain.

DOI: 10.1371/journal.pgen.1008675
PubMed: 32271756
PubMed Central: PMC7173932


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence.</title>
<author>
<name sortKey="Tong, Xiwen" sort="Tong, Xiwen" uniqKey="Tong X" first="Xiwen" last="Tong">Xiwen Tong</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yundan" sort="Wang, Yundan" uniqKey="Wang Y" first="Yundan" last="Wang">Yundan Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Pengcheng" sort="Yang, Pengcheng" uniqKey="Yang P" first="Pengcheng" last="Yang">Pengcheng Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chengshu" sort="Wang, Chengshu" uniqKey="Wang C" first="Chengshu" last="Wang">Chengshu Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kang, Le" sort="Kang, Le" uniqKey="Kang L" first="Le" last="Kang">Le Kang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32271756</idno>
<idno type="pmid">32271756</idno>
<idno type="doi">10.1371/journal.pgen.1008675</idno>
<idno type="pmc">PMC7173932</idno>
<idno type="wicri:Area/Main/Corpus">000166</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000166</idno>
<idno type="wicri:Area/Main/Curation">000166</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000166</idno>
<idno type="wicri:Area/Main/Exploration">000166</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence.</title>
<author>
<name sortKey="Tong, Xiwen" sort="Tong, Xiwen" uniqKey="Tong X" first="Xiwen" last="Tong">Xiwen Tong</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yundan" sort="Wang, Yundan" uniqKey="Wang Y" first="Yundan" last="Wang">Yundan Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Pengcheng" sort="Yang, Pengcheng" uniqKey="Yang P" first="Pengcheng" last="Yang">Pengcheng Yang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Chengshu" sort="Wang, Chengshu" uniqKey="Wang C" first="Chengshu" last="Wang">Chengshu Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai</wicri:regionArea>
<wicri:noRegion>Shanghai</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kang, Le" sort="Kang, Le" uniqKey="Kang L" first="Le" last="Kang">Le Kang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS genetics</title>
<idno type="eISSN">1553-7404</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Fungal Proteins (genetics)</term>
<term>Gene Deletion (MeSH)</term>
<term>Grasshoppers (metabolism)</term>
<term>Grasshoppers (microbiology)</term>
<term>Insect Proteins (metabolism)</term>
<term>Metarhizium (genetics)</term>
<term>Metarhizium (pathogenicity)</term>
<term>Monoamine Oxidase (genetics)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Receptors, Aryl Hydrocarbon (metabolism)</term>
<term>Tryptamines (metabolism)</term>
<term>Virulence (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Délétion de gène (MeSH)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Metarhizium (génétique)</term>
<term>Metarhizium (pathogénicité)</term>
<term>Monoamine oxidase (génétique)</term>
<term>Protéines d'insecte (métabolisme)</term>
<term>Protéines fongiques (génétique)</term>
<term>Récepteurs à hydrocarbure aromatique (métabolisme)</term>
<term>Sauterelles (microbiologie)</term>
<term>Sauterelles (métabolisme)</term>
<term>Tryptamines (métabolisme)</term>
<term>Virulence (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Monoamine Oxidase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Metarhizium</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Metarhizium</term>
<term>Monoamine oxidase</term>
<term>Protéines fongiques</term>
<term>Virulence</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Grasshoppers</term>
<term>Insect Proteins</term>
<term>Reactive Oxygen Species</term>
<term>Receptors, Aryl Hydrocarbon</term>
<term>Tryptamines</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Sauterelles</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Grasshoppers</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Espèces réactives de l'oxygène</term>
<term>Protéines d'insecte</term>
<term>Récepteurs à hydrocarbure aromatique</term>
<term>Sauterelles</term>
<term>Tryptamines</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Metarhizium</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Metarhizium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Deletion</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Délétion de gène</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Metarhizium is a group of insect-pathogenic fungi that can produce insecticidal metabolites, such as destruxins. Interestingly, the acridid-specific fungus Metarhizium acridum (MAC) can kill locusts faster than the generalist fungus Metarhizium robertsii (MAA) even without destruxin. However, the underlying mechanisms of different pathogenesis between host-generalist and host-specialist fungi remain unknown. This study compared transcriptomes and metabolite profiles to analyze the difference in responsiveness of locusts to MAA and MAC infections. Results confirmed that the detoxification and tryptamine catabolic pathways were significantly enriched in locusts after MAC infection compared with MAA infection and that high levels of tryptamine could kill locusts. Furthermore, tryptamine was found to be capable of activating the aryl hydrocarbon receptor of locusts (LmAhR) to produce damaging effects by inducing reactive oxygen species production and immune suppression. Therefore, reducing LmAhR expression by RNAi or inhibitor (SR1) attenuates the lethal effects of tryptamine on locusts. In addition, MAA, not MAC, possessed the monoamine oxidase (Mao) genes in tryptamine catabolism. Hence, deleting MrMao-1 could increase the virulence of generalist MAA on locusts and other insects. Therefore, our study provides a rather feasible way to design novel mycoinsecticides by deleting a gene instead of introducing any exogenous gene or domain.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32271756</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1553-7404</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>04</Month>
</PubDate>
</JournalIssue>
<Title>PLoS genetics</Title>
<ISOAbbreviation>PLoS Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence.</ArticleTitle>
<Pagination>
<MedlinePgn>e1008675</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pgen.1008675</ELocationID>
<Abstract>
<AbstractText>Metarhizium is a group of insect-pathogenic fungi that can produce insecticidal metabolites, such as destruxins. Interestingly, the acridid-specific fungus Metarhizium acridum (MAC) can kill locusts faster than the generalist fungus Metarhizium robertsii (MAA) even without destruxin. However, the underlying mechanisms of different pathogenesis between host-generalist and host-specialist fungi remain unknown. This study compared transcriptomes and metabolite profiles to analyze the difference in responsiveness of locusts to MAA and MAC infections. Results confirmed that the detoxification and tryptamine catabolic pathways were significantly enriched in locusts after MAC infection compared with MAA infection and that high levels of tryptamine could kill locusts. Furthermore, tryptamine was found to be capable of activating the aryl hydrocarbon receptor of locusts (LmAhR) to produce damaging effects by inducing reactive oxygen species production and immune suppression. Therefore, reducing LmAhR expression by RNAi or inhibitor (SR1) attenuates the lethal effects of tryptamine on locusts. In addition, MAA, not MAC, possessed the monoamine oxidase (Mao) genes in tryptamine catabolism. Hence, deleting MrMao-1 could increase the virulence of generalist MAA on locusts and other insects. Therefore, our study provides a rather feasible way to design novel mycoinsecticides by deleting a gene instead of introducing any exogenous gene or domain.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tong</LastName>
<ForeName>Xiwen</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yundan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Pengcheng</ForeName>
<Initials>P</Initials>
<Identifier Source="ORCID">0000-0001-5496-8357</Identifier>
<AffiliationInfo>
<Affiliation>Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Chengshu</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0003-1477-1466</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kang</LastName>
<ForeName>Le</ForeName>
<Initials>L</Initials>
<Identifier Source="ORCID">0000-0003-4262-2329</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Genet</MedlineTA>
<NlmUniqueID>101239074</NlmUniqueID>
<ISSNLinking>1553-7390</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019476">Insect Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018336">Receptors, Aryl Hydrocarbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014363">Tryptamines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>422ZU9N5TV</RegistryNumber>
<NameOfSubstance UI="C030820">tryptamine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.4.3.4</RegistryNumber>
<NameOfSubstance UI="D008995">Monoamine Oxidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006110" MajorTopicYN="N">Grasshoppers</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019476" MajorTopicYN="N">Insect Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052981" MajorTopicYN="N">Metarhizium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008995" MajorTopicYN="N">Monoamine Oxidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018336" MajorTopicYN="N">Receptors, Aryl Hydrocarbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014363" MajorTopicYN="N">Tryptamines</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014774" MajorTopicYN="N">Virulence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>No authors have competing interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>02</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32271756</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pgen.1008675</ArticleId>
<ArticleId IdType="pii">PGENETICS-D-19-01917</ArticleId>
<ArticleId IdType="pmc">PMC7173932</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):3882-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21325054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(1):31-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19210725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pest Manag Sci. 2010 Jun;66(6):669-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20201034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2011 Jun;7(6):e1002097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21731492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 Apr;29(4):779-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12775143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2014;32:403-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24655296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Endocrinol. 2012 Sep;26(9):1542-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22865928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Oct;109(2):717-720</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 23;282(12):8969-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17227774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invertebr Pathol. 2004 Feb;85(2):74-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15050836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Econ Entomol. 1998 Aug;91(4):841-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9725032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2017 Jan 31;62:73-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27860524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Allergol Immunopathol (Madr). 2017 Nov - Dec;45(6):579-591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28236540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2001;46:667-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11112183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Chem. 2014;10(6):580-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24295020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1957 Apr;65(4):763-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13426099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 May 29;5:10625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26023866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 22;336(6088):1576-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22723421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 May;4(5):937-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15879528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Invertebr Pathol. 2004 Mar;85(3):168-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15109899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2019 May 31;364(6443):894-897</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31147521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Insect Biochem Physiol. 2000 Jun;44(2):49-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10861866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2011 Jan;48(1):23-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2008 Nov;112(Pt 11):1355-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18947989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2019 Jul 18;15(7):e1007831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31318959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Jan;9(1):e1003102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23326229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):921-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7640526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Dec 16;7:2020</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28018335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2015 Apr;125(4):1579-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25798621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Lett. 2017 Apr 7;19(7):1686-1689</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28301168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2017 Jul;163(7):980-991</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28708056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1999 Oct;145 ( Pt 10):2691-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10537191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Trop. 2007 Jun;102(3):151-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17544354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Pharm Res. 2005 Mar;28(3):249-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15832810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Nov 25;111(47):16796-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25368161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2009 Jan 12;364(1513):3-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18926970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 05;8(8):e70609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23940603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Jan 06;7(1):e1001264</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21253567</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Tong, Xiwen" sort="Tong, Xiwen" uniqKey="Tong X" first="Xiwen" last="Tong">Xiwen Tong</name>
</noRegion>
<name sortKey="Kang, Le" sort="Kang, Le" uniqKey="Kang L" first="Le" last="Kang">Le Kang</name>
<name sortKey="Kang, Le" sort="Kang, Le" uniqKey="Kang L" first="Le" last="Kang">Le Kang</name>
<name sortKey="Kang, Le" sort="Kang, Le" uniqKey="Kang L" first="Le" last="Kang">Le Kang</name>
<name sortKey="Tong, Xiwen" sort="Tong, Xiwen" uniqKey="Tong X" first="Xiwen" last="Tong">Xiwen Tong</name>
<name sortKey="Wang, Chengshu" sort="Wang, Chengshu" uniqKey="Wang C" first="Chengshu" last="Wang">Chengshu Wang</name>
<name sortKey="Wang, Yundan" sort="Wang, Yundan" uniqKey="Wang Y" first="Yundan" last="Wang">Yundan Wang</name>
<name sortKey="Yang, Pengcheng" sort="Yang, Pengcheng" uniqKey="Yang P" first="Pengcheng" last="Yang">Pengcheng Yang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000010 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000010 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32271756
   |texte=   Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32271756" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020